Thermometers are devices that are used to define and measure temperatures. All thermometers are based on the principle that some physical property of a system changes as the system’s temperature changes. Some physical properties that change with temperature are (1) the volume of a liquid, (2) the length of a solid, (3) the pressure of a gas at constant volume, (4) the volume of a gas at constant pressure, (5) the electric resistance of a conductor, and (6) the color of an object. For a given substance and a given temperature range, a temperature scale can be established on the basis of any one of these physical properties. A common thermometer in everyday use consists of a mass of liquid—usually mercury or alcohol—that expands into a glass capillary tube when heated. In this case the physical property is the change in volume of a liquid. Any temperature change can be defined as being proportional to the change in length of the liquid column. The thermometer can be calibrated by placing it in thermal contact with some natural systems that remain at constant temperature. One such system is a mixture of water and ice in thermal equilibrium at atmospheric pressure. On the Celsius temperature scale,  this mixture is defined to have a temperature of zero degrees Celsius, which is written as 0°C; this temperature is called the ice point  of water. Another commonly used system is a mixture of water and steam in thermal equilibrium at atmospheric pressure; its temperature is 100°C, which is the steam point  of water. Once the liquid levels in the thermometer have been established at these two points, the distance between the two points is divided into 100 equal segments to create the Celsius scale. Thus, each segment denotes a change in temperature of one Celsius degree. (This temperature scale used to be called the centigrade scale because there are 100 gradations between the ice and steam points of water.)

                    Thermometers calibrated in this way present problems when extremely accurate readings are needed. For instance, the readings given by an alcohol thermometer calibrated at the ice and steam points of water might agree with those given by a mercury thermometer only at the calibration points. Because mercury and alcohol have different thermal expansion properties, when one thermometer reads a temperature of, for example, 50°C, the other may indicate a slightly different value. The discrepancies between thermometers are especially large when the temperatures to be measured are far from the calibration points.

               An additional practical problem of any thermometer is the limited range of temperatures over which it can be used. A mercury thermometer, for example, cannot be used below the freezing point of mercury, which is 39°C, and an alcohol thermometer is not useful for measuring temperatures above 85°C, the boiling point of alcohol. To surmount this problem, we need a universal thermometer whose readings are independent of the substance used in it. The gas thermometer, discussed in the next section, approaches this equirement.




1. Explain the definition of the following terms: (a) thermometric property, (b) thermometer scale, (c) Thermometer calibration,            (d) Fixed point of thermometer, (e) absolute zero temperature.

 2.The  following table shows the freezing and boiling points of the liquids which are used in thermometers

(a)    Whyich liquid would not be suitable for measuring the boiling point of water? Explain!

(b)   Why mercury can not be used in a thermometer to mesuare a temperature of -60 0C?



Tinggalkan Balasan

Isikan data di bawah atau klik salah satu ikon untuk log in:


You are commenting using your account. Logout /  Ubah )

Foto Google+

You are commenting using your Google+ account. Logout /  Ubah )

Gambar Twitter

You are commenting using your Twitter account. Logout /  Ubah )

Foto Facebook

You are commenting using your Facebook account. Logout /  Ubah )


Connecting to %s

%d blogger menyukai ini: